If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t-0.33t^2=0
a = -0.33; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·(-0.33)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*-0.33}=\frac{-12}{-0.66} =18+0.12/0.66 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*-0.33}=\frac{0}{-0.66} =0 $
| 3+k/8=2 | | F(x)=9x+45 | | 0=(1/6)y^2+y-(8/3) | | -14-8x=4(x-50) | | 9(x+4)=14+8x | | 22+4x=13-5x | | (3x-5)×7=7+7x | | 10+4(x-2)=15 | | -3(n+2)=n+22 | | X^2+9=t | | 2+9=7-3k | | 6(3x/2+4)-10=1/2(4x+16) | | 43x+4=15(5x-4) | | 8x–7x–1=7 | | 18/12=12/n | | 15x+30=6x-60 | | y^2-21y+105=0 | | 3x(5-8x)+4x(6x+9)=-51 | | (−1+2p)=3(3p−4 | | 18/12=n/12 | | 16v–-v=-17 | | 12+1/5(10x+5)=59 | | 6(y-1)+8=2 | | 3(k-7)=27 | | (3y-5)×7=7+7y | | 3/2=9/10/k | | -2(x+1/3)+9x=4 | | (3x-7)=6x-6 | | h+6/5=3 | | 2k-6-7-3k=-48 | | 7(c-4)=31 | | -32+3x=18-7x |